38 research outputs found

    Heterogeneous connections induce oscillations in large scale networks

    Full text link
    Realistic large-scale networks display an heterogeneous distribution of connectivity weights, that might also randomly vary in time. We show that depending on the level of heterogeneity in the connectivity coefficients, different qualitative macroscopic and microscopic regimes emerge. We evidence in particular generic transitions from stationary to perfectly periodic phase-locked regimes as the disorder parameter is increased, both in a simple model treated analytically and in a biologically relevant network made of excitable cells

    Noise-induced behaviors in neural mean field dynamics

    Full text link
    The collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks

    SUMOylation and calcium signalling: potential roles in the brain and beyond

    Get PDF
    Small ubiquitin-like modi er (SUMO) conjugation (or SUMOylation) is a post-translational protein modi cation implicated in alterations to protein expression, localization and func- tion. Despite a number of nuclear roles for SUMO being well characterized, this process has only started to be explored in relation to membrane proteins, such as ion channels. Cal- cium ion (Ca2+) signalling is crucial for the normal functioning of cells and is also involved in the pathophysiological mechanisms underlying relevant neurological and cardiovascu- lar diseases. Intracellular Ca2+ levels are tightly regulated; at rest, most Ca2+ is retained in organelles, such as the sarcoplasmic reticulum, or in the extracellular space, whereas depolarization triggers a series of events leading to Ca2+ entry, followed by extrusion and reuptake. The mechanisms that maintain Ca2+ homoeostasis are candidates for modulation at the post-translational level. Here, we review the effects of protein SUMOylation, including Ca2+ channels, their proteome and other proteins associated with Ca2+ signalling, on vital cellular functions, such as neurotransmission within the central nervous system (CNS) and in additional systems, most prominently here, in the cardiac system

    No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing.

    Get PDF
    BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.The COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 - HEALTH-F2-2009-223175). BCAC is funded by Cancer Research UK [C1287/A10118, C1287/A12014] and by the European Community´s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009-223175) (COGS). Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 16 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defense (W81XWH-10-1- 0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Project established by the National Cancer Institute and National Human Genome Research Institute.This is the author accepted manuscript. The final version is available from BMJ Group at http://dx.doi.org/10.1136/jmedgenet-2015-103529

    Quelques Ă©quations de champ moyen en neuroscience

    Get PDF
    This thesis deals with the study of the dynamical properties of large neu- ronal networks. We study neurons described by their firing rate with a linear intrinsic dynamics, and take into account several types of microscopic noise impacting the behavior of individual neurons. The "mean field" approach consists in studying the limit of the system of stochastic differential equations describing the network, when the number of neurons tends to infinity. The noise is either additive, or multiplicative if it affects the synaptic weights, and these ones are either fixed at the beginning, or dynamic. Therefore we obtain three types of equations that we study in this thesis. One of the main result is that in each case the propagation of chaos property holds. We analyze par- ticularly the influence of the noise on the dynamics (we show for example its role in the creation of cycles) and we discuss the implications in neuroscience.La thèse porte sur l'étude des propriétés dynamiques de grands réseaux de neurones. Nous étudions des neurones à taux de décharge, dotés d'une dynamique intrinsèque linéaire, et prenons en compte différents types de bruit microscopique affectant le comportement des neurones individuels. L'approche "champ moyen" consiste à étudier la limite du système d'équations différentielles stochastiques décrivant le réseau, lorsque le nombre de neurones tend vers l'infini. Le bruit est soit additif, soit multiplicatif s'il affecte les poids synaptiques, et ceux-ci sont soit figés au début de l'évolution, soit dynamiques. Nous obtenons donc trois types d'équations qui sont étudiées dans cette thèse. Un résultat important est qu'à chaque fois la propriété de propagation du chaos est vérifiée. Nous analysons tout particulièrement l'influence du bruit sur la dynamique (en montrant par exemple le role de celui-ci dans la création de cycles) et discutons des implications en neurosciences

    Noise-induced behaviors in neural mean field dynamics

    No full text
    International audienceThe collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks

    Noise-induced behaviors in neural mean field equations

    No full text
    International audienceno abstrac

    Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics

    No full text
    The physics of heat conduction puts practical limits on many technological fields such as energy production, storage, and conversion. It is now widely appreciated that the phonon-gas model does not describe the full vibrational spectrum in amorphous materials, since this picture likely breaks down at higher frequencies. A two-channel heat conduction model, which uses harmonic vibrational states and lattice dynamics as a basis, has recently been shown to capture both crystal-like (phonon-gas channel) and amorphous-like (diffuson channel) heat conduction. While materials design principles for the phonon-gas channel are well established, similar understanding and control of the diffuson channel is lacking. In this work, in order to uncover design principles for the diffuson channel, we study structurally-complex crystalline Yb14(Mn,Mg)Sb11, a champion thermoelectric material above 800 K, experimentally using inelastic neutron scattering and computationally using the two-channel lattice dynamical approach. Our results show that the diffuson channel indeed dominates in Yb14MnSb11 above 300 K. More importantly, we demonstrate a method for the rational design of amorphous-like heat conduction by considering the energetic proximity phonon modes and modifying them through chemical means. We show that increasing (decreasing) the mass on the Sb-site decreases (increases) the energy of these modes such that there is greater (smaller) overlap with Yb-dominated modes resulting in a higher (lower) thermal conductivity. This design strategy is exactly opposite of what is expected when the phonon-gas channel and/or common analytical models for the diffuson channel are considered, since in both cases an increase in atomic mass commonly leads to a decrease in thermal conductivity. This work demonstrates how two-channel lattice dynamics can not only quantitatively predict the relative importance of the phonon-gas and diffuson channels, but also lead to rational design strategies in materials where the diffuson channel is important
    corecore